Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.911
Filtrar
1.
Int J Biol Macromol ; 264(Pt 2): 130613, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38447836

RESUMO

The 2S albumins Ara h 2 and Ara h 6 have been shown to be the most important source of allergenicity in peanut. Several isoforms of these allergens have been described. Using extraction and liquid chromatography we isolated proteins with homology to Ara h 2 and characterized hitherto unknown Ara h 2 proteoforms with additional post-translational cleavage. High-resolution mass spectrometry located the cleavage site on the non-structured loop of Ara h 2 while far UV CD spectroscopy showed a comparable structure to Ara h 2. The cleaved forms of Ara h 2 were present in genotypes of peanut commonly consumed. Importantly, we revealed that newly identified Ara h 2 cleaved proteoforms showed comparable IgE-binding using sera from 28 peanut-sensitized individuals, possessed almost the same IgE binding potency and are likely similarly allergenic as intact Ara h 2. This makes these newly identified forms relevant proteoforms of peanut allergen Ara h 2.


Assuntos
Hipersensibilidade a Amendoim , Proteínas de Plantas , Humanos , Proteínas de Plantas/química , Antígenos de Plantas/química , Imunoglobulina E/metabolismo , Albuminas 2S de Plantas/química , Glicoproteínas/química , Alérgenos/química , Arachis/química
2.
Food Chem ; 447: 138940, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38484545

RESUMO

The study aimed to investigate the allergenicity change in casein treated with dielectric barrier discharge (DBD) plasma during in vitro simulated digestion, focusing on the immunoglobulin E (IgE) linear epitopes and utilizing a sensitized-cell model. Results indicated that prior treatment with DBD plasma treatment (4 min) before simulated digestion led to a 10.5% reduction in the IgE-binding capacity of casein digestion products. Moreover, the release of biologically active substances induced from KU812 cells, including ß-HEX release rate, human histamine, IL-4, IL-6, and TNF-α, decreased by 2.1, 28.1, 20.6, 11.6, and 17.3%, respectively. Through a combined analysis of LC-MS/MS and immunoinformatics tools, it was revealed that DBD plasma treatment promoted the degradation of the IgE linear epitopes of casein during digestion, particularly those located in the α-helix region of αs1-CN and αs2-CN. These findings suggest that DBD plasma treatment prior to digestion may alleviate casein allergic reactions.


Assuntos
Imunoglobulina E , Hipersensibilidade a Leite , Humanos , Epitopos , Imunoglobulina E/metabolismo , Alérgenos/química , Caseínas/química , Cromatografia Líquida , Espectrometria de Massas em Tandem , Digestão
3.
J Agric Food Chem ; 72(14): 8189-8199, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38551197

RESUMO

Protein from Sichuan peppers can elicit mild to severe allergic reactions. However, little is known about their allergenic proteins. We aimed to isolate, identify, clone, and characterize Sichuan pepper allergens and to determine its allergenicity and cross-reactivities. Sichuan pepper seed proteins were extracted and then analyzed by SDS-PAGE. Western blotting was performed with sera from Sichuan pepper-allergic individuals. Proteins of interest were purified using hydrophobic interaction chromatography and gel filtration and further analyzed by analytical ultracentrifugation, circular dichroism spectroscopy, and mass spectrometry (MS). Their coding region was amplified in the genome. IgE reactivity and cross-reactivity of allergens were evaluated by dot blot, enzyme-linked immunosorbent assay (ELISA), and competitive ELISA. Western blot showed IgE binding to a 55 kDa protein. This protein was homologous to the citrus proteins and has high stability and a sheet structure. Four DNA sequences were cloned. Six patients' sera (60%) showed specific IgE reactivity to this purified 11S protein, which was proved to have cross-reactivation with extracts of cashew nuts, pistachios, and citrus seeds. A novel allergen in Sichuan pepper seeds, Zan b 2, which belongs to the 11S globulin family, was isolated and identified. Its cross-reactivity with cashew nuts, pistachios, and citrus seeds was demonstrated.


Assuntos
Alérgenos , Hipersensibilidade a Noz , Humanos , Alérgenos/genética , Alérgenos/química , 60654 , Proteínas de Plantas/genética , Proteínas de Plantas/química , Reações Cruzadas , Clonagem Molecular , Imunoglobulina E/metabolismo
4.
Int J Biol Macromol ; 262(Pt 2): 130099, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38342255

RESUMO

The study aimed to assay the allergenicity of shrimp tropomyosin (TM) following covalent conjugation with quercetin (QR) and chlorogenic acid (CA). The structure of the TM-polyphenol covalent conjugates was examined by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), circular dichroism (CD), fluorescence, differential scanning calorimetry (DSC), and Fourier Transform infrared spectroscopy (FTIR). Potential allergenicity was evaluated using in vitro and in vivo methods. The results showed that QR and CA induced structural changes in TM through aggregation. RBL-2H3 cell results showed that TM-QR and TM-CA covalent conjugates reduced the release of ß-hexosaminidase and histamine, respectively. In the mice model, TM-QR and TM-CA covalent conjugates reduced the level of IgE, IgG, IgG1, histamine, and mMCP-1 in sera. Furthermore, the allergenicity was reduced by suppressing Th2-related cytokines (IL-4, IL-5, IL-13) and promoting Th1-related cytokines (IFN-γ). These research findings demonstrate that the covalent binding of TM with QR and CA, modifies the allergenic epitopes of shrimp TM, thereby reducing its potential allergenicity. This approach holds practical applications in the production of low-allergenicity food within the food industry.


Assuntos
Alérgenos , Tropomiosina , Camundongos , Animais , Tropomiosina/química , Alérgenos/química , Ácido Clorogênico/química , Quercetina , Histamina , Imunoglobulina E/metabolismo , Citocinas
5.
Food Chem ; 443: 138614, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38301561

RESUMO

Studies have shown that high hydrostatic pressure (HHP) processing and chlorogenic acid (CA) treatment can effectively reduce food allergenicity. We hypothesize that these novel processing techniques can help tackle crayfish allergy and examined the impact and mechanism of HHP (300 MPa, 15 min) and CA (CA:tropomyosin = 1:4000, 15 min) on the allergenicity of crayfish tropomyosin. Our results revealed that CA, rather than HHP, effectively reduced tropomyosin's allergenicity, as evident in the alleviation of allergic symptoms in a food allergy mouse model. Spectroscopy and molecular docking analyses demonstrated that CA could reduce the allergenicity of tropomyosin by covalent or non-covalent binding, altering its secondary structure (2.1 % decrease in α-helix; 1.9 % increase in ß-fold) and masking tropomyosin's linear epitopes. Moreover, CA-treated tropomyosin potentially induced milder allergic reactions by up-regulating TLR8. While our results supported the efficacy of CA in alleviating crayfish allergy, further exploration is needed to determine clinical effectiveness.


Assuntos
Hipersensibilidade Alimentar , Tropomiosina , Animais , Camundongos , Tropomiosina/metabolismo , Astacoidea/metabolismo , Ácido Clorogênico , Receptor 8 Toll-Like , Simulação de Acoplamento Molecular , Alérgenos/química
6.
Int J Biol Macromol ; 262(Pt 1): 129972, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38336314

RESUMO

BACKGROUND: Blomia tropicalis (B. tropicalis) has been reported to impose an increased risk of allergic diseases. However, few characteristics of the unknown allergen components responsible for B. tropicalis allergy and clinical relevance have been fully identified. METHODS: We synthesized and characterized the physicochemical properties and cross-reactivity of the newly discovered recombinant B. tropicalis group 41 allergen (rBlo t 41). Subsequently, sera were collected from 107 B. tropicalis allergic subjects to evaluate the prevalence of the rBlo t 41. Lastly, its allergenicity was tested in humans by basophil activation assays, and in mice by a model of allergic asthma. RESULTS: The mature protein of rBlo t 41 was described as 104 amino acids long and 15.8 kDa, and its limited cross-reactivity was observed between allergens of house dust mites (HDM). Sensitization rate of rBlo t 41 (56.07 %) was lower than rBlo t 2 (76.29 %) and rBlo t 5 (69.07 %) in our study. Besides, rBlo t 41 elicited CD63 upregulation in basophils, whereas rBlo t 41-sensitized mice generated rBlo t 41-IgE and developed allergic airway inflammation after allergen exposure. Of note, component-based tests showed a high area under curve value (AUC = 0.75) of rBlo t 41, displaying its favorable diagnostic potential in B. tropicalis allergy. CONCLUSIONS: rBlo t 41 was identified as a candidate novel major allergen with good diagnostic potential in B. tropicalis sensitization. Additionally, we provided strong evidence about rBlo t 41 on the clinically relevant manifestations in B. tropicalis allergies, conducive to facilitating the development of component-resolved diagnosis.


Assuntos
Asma , Hipersensibilidade , Humanos , Camundongos , Animais , Alérgenos/química , Reações Cruzadas , Inflamação , Quitina
7.
J Agric Food Chem ; 72(6): 3142-3149, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38299554

RESUMO

Peanut allergy is a prevalent and concerning food allergy. Roasting can introduce structural changes to peanut allergens, affecting their allergenicity, but the structure on the primary structure is unclear. Here, the breakage sites were identified by mass spectrometry and software tools, and structural changes were simulated by molecular dynamics and displayed by PyMOL software. Results revealed that the appearance frequencies of L, Q, F, and E were high at the N-terminal of the breakage site, while S and E were dominant at the C-terminal. In the conformational structure, breakage sites were found close to disulfide bonds and the Cupin domains of Ara h 1 and Ara h 3. The breakage of allergens destroyed linear epitopes and might change the conformation of epitopes, which could influence peanuts' potential allergenicity.


Assuntos
Arachis , Hipersensibilidade a Amendoim , Arachis/química , Antígenos de Plantas/análise , Alérgenos/química , Temperatura Alta , Imunoglobulina E , Epitopos , Espectrometria de Massas , Proteínas de Plantas/química
8.
Braz J Biol ; 83: e274260, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38422259

RESUMO

Several studies have been carried out to expand the use of Ricinus communis L. castor bean (Ricinus communis L castor bean.). This oilseed finds appropriate conditions for its development in Brazil, with more than 700 applications. The main allergens of this plant are Ric c1 and Ric c3, that cross-react with various aeroallergens and food allergens such as peanuts, soybeans, corn, and wheat. This study aimed to determine the effect of mutations in Ric c3 amino acid residues known to affect IgE binding and allergy challenges. Based on the Ric c3 structure, B-cell epitopes, and amino acid involved in IgE binding, we produce recombinant mutant protein, mrRic c3, secreted from E. coli. Strategic glutamic acid residues in IgE-biding regions were changed by Leucine. The allergenicity of mrRic c3 was evaluated by determination of IgE, IgG1, and total IgG in immunized Balb/c mice and by degranulation assays of mast cells isolated from Wistar rats. The mrRic c3 presented a percentage of mast cell degranulation close to that seen in the negative control, and the immunization of mice with mrRic c3 presented lower levels of IgE and IgG1 than the group treated with the protein without mutations. The mutant mrRic c3 had an altered structure and reduced ability to stimulate pro-inflammatory responses and bind IgE but retained its ability to induce blocking antibodies. Thus, producing a hypoallergenic mutant allergen (mrRic c3) may be essential in developing new AIT strategies.


Assuntos
Alérgenos , Escherichia coli , Ratos , Camundongos , Animais , Alérgenos/química , Alérgenos/genética , Escherichia coli/genética , Imunoglobulina E , Ratos Wistar , Proteínas Recombinantes , Imunoglobulina G , Aminoácidos
9.
Int J Biol Macromol ; 260(Pt 2): 129582, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38246469

RESUMO

Parvalbumin (PV) is a major allergen in fish, and traditional treatments cannot reduce its sensitization. The effects of dense-phase carbon dioxide (DPCD) treatment on the sensitization and spatial structure of PV in Trachinotus ovatus were evaluated in this study. Western blotting and indirect ELISA were used to determine the allergenicity changes and spatial conformations of PV treated by DPCD. Tris-tricine-SDS-PAGE, circular dichroism, surface hydrophobicity, endogenous fluorescence, UV spectrophotometry, free amino group, total sulfhydryl group and SEM analyses were applied to characterize PV structure. The results showed that DPCD treatment (15 MPa, 30 min, 50 °C) could reduce PV-induced allergic reactions by 39-41 %, which destroyed the normal conformational epitopes and reduced the risk of PV-induced allergy. The secondary structure changed from ordered to disordered with a decreased content of α-helical groups, while the internal hydrophobic groups were exposed. The total sulfhydryl group content decreased significantly (P < 0.05). The surface hydrophobicity and ultraviolet absorption spectrum were enhanced, and the endogenous fluorescence peak shifted to a long wavelength. Meanwhile, the content of free amino groups increased significantly (P < 0.05). This study could provide a theoretical basis and a promising technical approach for reduction of PV allergenicities.


Assuntos
Hipersensibilidade , Parvalbuminas , Animais , Parvalbuminas/química , Dióxido de Carbono/química , Alérgenos/química , Peixes , Estrutura Secundária de Proteína
10.
Food Chem ; 441: 138115, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38183716

RESUMO

Ara h 1 is the major allergen in peanuts. To enhance the unique flavor, peanuts are usually roasted at high temperatures. However, roasting can increase the allergenic potential, owing to glycation of allergens. Atmospheric cold plasma (ACP) is a non-thermal processing technology that generates reactive species, enabling protein structural changes. Herein, glucose was also added to the ACP-treated peanut protein before roasting. The content and antigenicity of the advanced glycation end products were measured. The antigenicity was evaluated by ELISA and in vitro digestion assays. The amino acid profile and secondary and tertiary protein structures were also assessed. The antigenicity of Ara h 1 decreased by 91 % and 76 % after 30 min of air and nitrogen plasma treatment, respectively. The glycation degree and thermal and digestive stabilities were also reduced. These results correlated with the structural changes, denaturation, and aggregation. Therefore, cold plasma may reduce the allergic effects of peanuts.


Assuntos
Hipersensibilidade a Amendoim , Gases em Plasma , Arachis/química , Antígenos de Plantas/química , Aminoácidos , Proteínas de Plantas/metabolismo , Alérgenos/química
11.
Int Immunopharmacol ; 128: 111488, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38185034

RESUMO

BACKGROUND: Cat-derived allergens are considered as one of the most common causes of allergic diseases worldwide. Fel d 1 is a major cat allergen and plays an important role in immunoglobulin E (IgE)-reaction diagnosis. However, the two separate chains of Fel d 1 exhibited lower IgE-reactivity than its complete molecule of an assembled form, which makes it difficult to efficiently prepare and limits the application of Fel d 1 in molecular diagnosis of cat allergy. METHODS: We first applied artificial intelligence (AI) based tool AlphaFold2 to build the 3-dimensional structures of Fel d 1 with different connection modes between two chains, which were evaluated by ERRAT program and were expressed in Escherichia coli. We then calculated the expression ratios of soluble form/inclusion bodies form of optimized Fel d 1. The Circular Dichroism (CD), High Performance Liquid Chromatography-Size Exclusion Chromatography (HPLC-SEC) and reducing/non-reducing SDS-PAGE were performed to characterize the folding status and dimerization of the optimized fusion Fel d 1. The improvement of specific-IgE reactivity to optimized fusion Fel d 1 was investigated by enzyme linked immunosorbent assay (ELISA). RESULTS: Among several linkers, 2 × GGGGS got the highest scores, with an overall quality factor of 100. The error value of the residues around the junction of 2 × GGGGS was lower than others. It exhibited highest proportion of soluble protein than other Fel d 1 constructs with ERRAT (GGGGS, KK as well as direct fusion Fel d 1). The results of CD and HPLC-SEC showed the consistent folding and dimerization of two fused subunits between the optimized fusion Fel d 1 and previously well-defined direct fusion Fel d 1. The overall IgE-binding absorbance of optimized fusion Fel d 1 tested by ELISA was improved compared with that of the direct fusion Fel d 1. CONCLUSION: We firstly provided an AI-design strategy to optimize the Fel d 1, which could spontaneously fold into its native-like structure without additional refolding process or eukaryotic folding factors. The improved IgE-binding activity and simplified preparation method could greatly facilitate it to be a robust allergen material for molecular diagnosis of cat allergy.


Assuntos
Hipersensibilidade , Imunoglobulina E , Humanos , Imunoglobulina E/metabolismo , Sequência de Aminoácidos , Inteligência Artificial , Alérgenos/química
12.
J Agric Food Chem ; 72(5): 2801-2812, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38275225

RESUMO

Effects of different high-temperature conduction modes [high-temperature air conduction (HAC), high-temperature contact conduction (HCC), high-temperature steam conduction (HSC)]-induced glycation on the digestibility and IgG/IgE-binding ability of ovalbumin (OVA) were studied and the mechanisms were investigated. The conformation in OVA-HSC showed minimal structural changes based on circular dichroism, fluorescence, and ultraviolet spectroscopy. The degree of hydrolysis analysis indicated that glycated OVA was more resistant to digestive enzymes. Liquid chromatography-Orbitrap mass spectrometry identified 11, 14, and 15 glycation sites in OVA-HAC, OVA-HCC, and OVA-HSC, respectively. The IgG/IgE-binding ability of OVA was reduced during glycation and digestion, and the interactions among glycation, allergenicity, and digestibility were further investigated. Glycation sites masked the IgG/IgE epitopes resulting in a reduction in allergenicity. Digestion enzymes destroyed the IgG/IgE epitopes thus reducing allergenicity. Meanwhile, the glycation site in proximity to the digestion site of pepsin was observed to cause a reduction in digestibility.


Assuntos
Alérgenos , Reação de Maillard , Ovalbumina/química , Temperatura , Dicroísmo Circular , Alérgenos/química , Imunoglobulina E/metabolismo , Imunoglobulina G/química , Epitopos
13.
Int J Biol Macromol ; 259(Pt 2): 129232, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38191104

RESUMO

Ambrosia trifida (giant ragweed) is an invasive plant that can cause serious damage to natural ecosystems and severe respiratory allergies. However, the genomic basis of invasive adaptation and pollen allergens in Ambrosia species remain largely unknown. Here, we present a 1.66 Gb chromosome-scale reference genome for giant ragweed and identified multiple types of genome duplications, which are responsible for its rapid environmental adaptation and pollen development. The largest copies number and species-specific expansions of resistance-related gene families compared to Heliantheae alliance might contribute to resist stresses, pathogens and rapid adaptation. To extend the knowledge of evolutionary process of allergic pollen proteins, we predicted 26 and 168 potential pollen allergen candidates for giant ragweed and other Asteraceae plant species by combining machine learning and identity screening. Interestingly, we observed a specific tandemly repeated array for potential allergenic pectate lyases among Ambrosia species. Rapid evolutionary rates on putative pectate lyase allergens may imply a crucial role of nonsynonymous mutations on amino acid residues for plant biological function and allergenicity. Altogether, this study provides insight into the molecular ecological adaptation and putative pollen allergens prediction that will be helpful in promoting invasion genomic research and evolution of putative pollen allergy in giant ragweed.


Assuntos
Ambrosia , Hipersensibilidade , Ambrosia/genética , Antígenos de Plantas/genética , Ecossistema , Alérgenos/genética , Alérgenos/química , Pólen/genética , Cromossomos
14.
Int J Biol Macromol ; 261(Pt 1): 129695, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38280703

RESUMO

The study focused on the regulation of ovalbumin (OVA) allergenicity using pulsed electric field (PEF) technology and examined the structure-activity link. Following PEF treatment, the ability of OVA to bind to IgE and IgG1 at 6 kHz was inhibited by 30.41 %. According to the microstructure, PEF caused cracks on the OVA surface. Spectral analysis revealed a blue shift in the amide I band and a decrease in α-helix and ß-sheet content indicating that the structure of OVA was unfolded. The disulfide bond conformation was transformed and the structure tended to be disordered. The increased fluorescence intensity indicated that tryptophan and tyrosine were exposed which led an increase in hydrophobicity. In addition, the results of molecular dynamics (MD) simulations confirmed that the stability of OVA was reduced after PEF, which was related to the reduction of hydrogen bonding and the sharp fluctuation of aspartic acid. Therefore, PEF treatment induced the exposure of hydrophobic amino acids and the transformation of disulfide bond configuration which in turn masked or destroyed allergenic epitopes, and ultimately inhibited OVA allergenicity. This study provided insightful information for the production of hypoallergenic eggs and promoted the use of PEF techniques in the food field.


Assuntos
Alérgenos , Eletricidade , Ovalbumina/química , Alérgenos/química , Ovos , Dissulfetos
15.
J Sci Food Agric ; 104(4): 2006-2014, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-37909354

RESUMO

BACKGROUND: Peanut is a significant source of nutrition and a valuable oilseed crop. It is also a serious allergy source, which poses a threat to 1.1% of the population. This study aimed to screen lactic acid bacteria (LAB) with the capacity to alleviate peanut allergenicity and exhibit anti-allergic properties. RESULT: The results show that LAB can make use of substances in peanuts to reduce the pH of peanut milk from 6.603 to 3.593-4.500 by acid production and that it can utilize the protein in peanuts to reduce the allergenic content (especially Ara h 1) and improve biological activity in peanut pulp. The content of Ara h 1 peanut-sensitizing protein was reduced by 74.65% after fermentation. The protein extracted from fermented peanut pulp is more readily digestible by gastrointestinal juices. The inhibitory activity assay of hyaluronidase (an enzyme with strong correlation to allergy) increased from 46.65% to a maximum of 90.57% to reveal that LAB fermentation of peanut pulp exhibited a robust anti-allergic response. CONCLUSION: The strains identified in this study exhibited the ability to mitigate peanut allergenicity partially and to possess potential anti-allergic properties. Lactobacillus plantarum P1 and Lactobacillus salivarius C24 were identified as the most promising strains and were selected for further research. © 2023 Society of Chemical Industry.


Assuntos
Antialérgicos , Lactobacillales , Hipersensibilidade a Amendoim , Hipersensibilidade a Amendoim/prevenção & controle , Antígenos de Plantas/metabolismo , Antialérgicos/farmacologia , Lactobacillus/metabolismo , Proteínas de Plantas/metabolismo , Arachis/química , Alérgenos/química , Lactobacillales/metabolismo
16.
Food Funct ; 15(1): 196-207, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38047408

RESUMO

Ovomucoid is the immune-dominant allergen in the egg white of hens. Due to its structure based on nine disulfide bonds as well as its resistance to heat and enzymatic hydrolysis, the allergenicity of this food protein is difficult to decrease by technological processes. We sought to reduce its allergenicity through the Maillard reaction. The unfolding of ovomucoid with L-cysteine-mediated reduction was used to increase accessibility to conformational and linear epitopes by modifying the secondary and tertiary structures of the allergen. Glycation with different saccharides revealed the beneficial effect of maltose glycation on the IgG-binding capacity reduction. By determining the better glycation conditions of unfolded ovomucoid, we produced ovomucoid with reduced IgE binding capacity due to the glycation sites (K17, K112, K129, and K164) on epitopes. Moreover, after simulated infant and adult gastrointestinal digestion, the unfolded plus glycated ovomucoid showed higher ABTS˙+ scavenging activity, O2˙- scavenging activity, ˙OH scavenging activity, Fe2+ chelating activity, and a FRAP value; in particular, for ˙OH scavenging activity, there was a sharp increase of more than 100%.


Assuntos
Reação de Maillard , Ovomucina , Humanos , Lactente , Adulto , Animais , Feminino , Ovomucina/química , Ovomucina/metabolismo , Antioxidantes , Galinhas/metabolismo , Epitopos/química , Alérgenos/química , Imunoglobulina E/química , Imunoglobulina G/química
17.
J Sci Food Agric ; 104(4): 2477-2483, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-37968892

RESUMO

BACKGROUND: Wheat gluten (WG) containing gliadin and glutenin are considered the main allergens in wheat allergy as a result of their glutamine-rich peptides. Deamidation is a viable and efficient approach for protein modifications converting glutamine into glutamic acid, which may have the potential for allergenicity reduction of WG. RESULTS: Deamidation by citric acid was performed to investigate the effects on structure, allergenicity and noodle textural properties of wheat gluten (WG). WG was heated at 100 °C in 1 m citric acid to yield deamidated WG with degrees of deamidation (DD) ranging from DWG-25 (25% DD) to DWG-70 (70% DD). Fourier-transform infrared and intrinsic fluorescence spectroscopy results suggested the unfolding of WG structure during deamidation, and sodium dodecyl sulphate-polyacrylamide gel electrophoresis showed molecular weight shifts at the 35-63 kDa region, suggesting that the deamidation mainly occurred on low molecular weight glutenin subunits and γ- gliadin of the WG. An enzyme-linked immunosorbent assay of deamidated WG revealed a decrease in absorbance and immunoblotting indicated that the intensities of protein bands at 35-63 kDa decreased, which suggested that deamidation of WG might have caused a greater loss of epitopes than the generation of new epitopes caused by unfolding of WG, and thereby reduction of the immunodominant immunoglobulin E binding capacity, ultimately leading to the decrease in allergenicity. DWG-25 was used in the preparation of recombinant hypoallergenic noodles, and the hardness, elasticity, chewiness and gumminess were improved significantly by the addition of azodicarbonamide. CONCLUSION: The present shows the potential for deamidation of the WG products used in novel hypoallergenic food development. © 2023 Society of Chemical Industry.


Assuntos
Gliadina , Hipersensibilidade a Trigo , Humanos , Alérgenos/química , Glutamina , Glutens/química , Epitopos/química , Ácido Cítrico
18.
Food Chem ; 438: 137920, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38000156

RESUMO

The digestion products of Penaeus vannamei still had sensitizing and eliciting capacity; however, the underlying mechanism has not been identified. This study analyzed the structural changes of shrimp proteins during digestion, predicted the linearmimotopepeptides and first validated the allergenicity of immunodominantepitopes with binding ability. The results showed that the shrimp proteins were gradually degraded into small peptides during digestion, which might lead to the destruction of linear epitopes. However, these peptides carried IgE epitopes that still trigger allergic reactions. Eighteen digestion-resistant epitopes were predicted by multiple immunoinformatics tools and digestomics. Five epitopes contained more critical amino acids and had strong molecular docking (P1: DSGVGIYAPDAEA, P2: EGELKGTYYPLTGM, P3: GRQGDPHGKFDLPPGV, P4: IFAWPHKDNNGIE, P5: KSTESSVTVPDVPSIHD), and these epitopes were identified as novel IgE binding immunodominantepitopes in Penaeus vannamei. These findings provide novel insight into allergenic epitopes, which might serve as key targets for reducing the allergenicity in shrimp.


Assuntos
Penaeidae , Animais , Sequência de Aminoácidos , Epitopos Imunodominantes , Alérgenos/química , Simulação de Acoplamento Molecular , Imunoglobulina E , Peptídeos , Epitopos/química , Digestão , Tropomiosina/química
19.
Int J Biol Macromol ; 258(Pt 1): 128340, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38000575

RESUMO

Interactions between plant polyphenols and food allergens may be a new way to alleviate food allergies. The non-covalent interactions between the major allergen from peanut (Ara h 2) with procyanidin dimer (PA2) were therefore characterized using spectroscopic, thermodynamic, and molecular simulation analyses. The main interaction between the Ara h 2 and PA2 was hydrogen bonding. PA2 statically quenched the intrinsic fluorescence intensity and altered the conformation of the Ara h 2, leading to a more disordered polypeptide structure with a lower surface hydrophobicity. In addition, the in vitro allergenicity of the Ara h 2-PA2 complex was investigated using enzyme-linked immunosorbent assay (ELISA) kits. The immunoglobulin E (IgE) binding capacity of Ara h 2, as well as the release of allergenic cytokines, decreased after interacting with PA2. When the ratio of Ara h 2-to-PA2 was 1:50, the IgE binding capacity was reduced by around 43 %. This study provides valuable insights into the non-covalent interactions between Ara h 2 and PA2, as well as the potential mechanism of action of the anti-allergic reaction caused by binding of the polyphenols to the allergens.


Assuntos
Hipersensibilidade a Amendoim , Proantocianidinas , Arachis/química , Antígenos de Plantas/química , Alérgenos/química , Proantocianidinas/metabolismo , Glicoproteínas/química , Imunoglobulina E/metabolismo , Polifenóis/metabolismo , Proteínas de Plantas/química
20.
Food Chem ; 438: 137922, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-37979263

RESUMO

Accurate determination of egg allergens in food is vital for allergen management and labeling. However, quantifying egg allergens with mass spectrometry poses challenges and lacks validation methods. Here, we developed and validated an LC-MS/MS method for quantifying egg allergens (Gal d 1-6) in foods. Sample extraction, enzymatic digestion, purification, proteins/peptides selection, and calibration curves were optimized. VMVLC[+57]NR (Gal d 1) and GTDVQAWIR (Gal d 5) exhibited outstanding sensitivity and stability, serving as quantitation markers for egg white and yolk. Using a matrix-matched calibration curve with allergen ingredients as calibrants and labeled peptides as standards, we achieved highly accurate quantitation. Validation involved spiking egg protein into egg-free foods, showing excellent sensitivity (LOQ: 1-5 mg/kg), accuracy (62.4 %-88.5 %), and reproducibility (intra-/inter-day precision: 3.5 %-14.2 %/8.2 %-14.6 %). Additionally, we successfully applied this method to commercial food analysis. These findings demonstrate optimal allergen selection, peptides, and calibration strategy are crucial parameters for food allergen quantification via MS-based methods.


Assuntos
Hipersensibilidade a Ovo , Humanos , Cromatografia Líquida/métodos , Alérgenos/química , Calibragem , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodos , Peptídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...